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Abstract –

Context/Background
The game of Go has been one of the long-standing grand challenges in artificial intelligence. Due to 
its extremely large branching factor and state space combined with the difficulty of designing good 
static evaluation functions, traditional brute force methods were inadequate for the purposes of 
creating strong Go playing AIs. Therefore, new techniques such as Monte-Carlo Tree Search needed 
to be developed before significant progress could be made. More recently, the use of neural networks 
and deep learning have led to large jumps in the playing strength of computers as demonstrated by 
programs such as AlphaGo.

Aims
This project aimed to implement an agent  that plays Go using Monte-Carlo Tree Search. Different 
versions of this agent were implemented by extending the basic agent  using different  types of 
heuristics. The aim was then to evaluate and compare the different  agents in order to see which 
heuristics were able to provide the most benefit.

Method
The different  agents were all be extensions of the same base MCTS player. After tuning any necessary 
parameters, the agents competed against  each other in a round-robin tournament. The best version of 
the agent also played several games against human opponents to try and produce an estimate of its 
absolute strength.

Results
We found that using the all-moves-as-first heuristic to improve the early accuracy when estimating the 
value of moves was the most  effective way to extend the MCTS algorithm. In addition, Go-specific 
heuristics also provided value both in biasing the search and in improving the quality of the random 
simulations. A fully-connected single-layer neural network was found to be insufficient  for being able 
to improve the computer’s play.

Conclusion
We show that the MCTS algorithm can be extended using a variety of techniques in order to improve 
its performance at  the game of Go, with success coming from both domain-dependent and domain-
independent  approaches. When all the techniques were combined, the resulting computer player was 
able to consistently win games against  a 9kyu human player on a 9x9 board when taking a four stone 
handicap.
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I. INTRODUCTION

The simplicity of the rules of Go combined with the long-standing inability  of computer 
programs to beat the best human players has made Go one of the grand challenges of artificial 
intelligence, and one that stood until very recently  (Silver et  al., 2016). This introduction 
provides a brief summary of the rules of Go and describes the reasons why it is such a 
difficult game for computers to master. We then outline the aims and deliverables for this 
project.

Rules of Go
Go is an ancient, perfect information, abstract strategy game, in which players alternate turns 
placing a stone on an empty intersection of a 19x19 grid, with the ultimate goal being to 
surround as much territory (empty intersections) as possible. If a stone is adjacent  to another 
stone of the same colour, they form a single block. The empty points adjacent to the block are 
the block’s liberties, and if all of these become filled by enemy stones, the block of stones is 
captured and removed from the board. It  is not  allowed for a player to place a stone such that 
any of their own groups run out of liberties (i.e. suicidal moves are forbidden). The game 
ends when both players decide there are no more advantageous moves left to be played, and 
therefore both pass. There is one additional rule (the ‘ko’ rule) which prevents infinitely 
repeating board positions from recurring by forbidding moves which would return the board 
to the exact same state as it was the move previously.

Figure 1. A completed game of Go on the smaller 9x9 board. Under Chinese rules, each 
player scores a point for each of their stones on the board, as well as for any of the empty 
intersections in the territory that they have surrounded. In this example, black has won by 
a score of 42-39. White will often receive ‘komi’ worth around 6 points as compensation 
for playing second.

An important concept in Go is that of ‘life and death’, which refers to the question of 
whether a given group can eventually be captured (in which case it is dead) or if the group 
will be able to survive until the end of the game. The feature of groups that distinguishes 
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between these two categories is whether or not  the group can make at least two ‘eyes’ or not. 
An eye is an empty intersection inside a group  which the opposing player will never be able 
to play  on unless that point is the group’s last remaining liberty, in which case playing there 
would capture the whole group. Due to the suicide rule, if a group has two eyes, the opponent 
will never be able to remove these liberties and so the group is ‘immortal’ and will live 
forever (barring the circumstance where a player fills in one of their own eyes, nearly  always 
a huge blunder).

Go has a natural ranking system where the difference in two players’ ranks corresponds to 
the number of handicap stones (stones placed on the board before the start of the game) that 
are required for the game to be even. Beginners start somewhere in the 30-kyu range, with 
their rank decreasing as they get stronger until they reach 1-kyu. After the kyu levels come 
the dan levels, going up from 1-dan to 9-dan. (Professionals are also ranked on a separate dan 
system. An amateur 9-dan will have similar strength to a professional 1-dan).

Figure 2. Examples of eyes and life and death.
The black group marked 1 currently  has only  one eye at A. White cannot play at A 
immediately (since that would be suicide) but can play there to capture the group once all 
of the outside liberties have been taken away.
The group marked 2 has two eyes and is therefore immortal. White will never be able to 
play at B or C, and so the group can never be captured.
The group marked 3 is also considered alive even though it doesn’t yet have two clear 
eyes. E and D are considered miai; if white plays at one of the points, then black can play 
the other one to make two eyes. Therefore, black has no need to make an additional move 
here unless white plays there first.

The Difficulty of Go for Computers
At the time that Deep Blue achieved its first victory  over Kasparov, computer Go was still 
very much in its infancy  (Funke, 2012). In 1998, a strong amateur player managed to defeat 
one of the strongest programs arounds despite it taking a 29 stone handicap (Muller, 2002), 
which would have put the strength of Go computers at the weak amateur level.

There are a couple of reasons why the techniques that allowed computers to conquer 
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chess, namely extremely large tree-searches aided by  tools such as alpha-beta pruning, failed 
to crossover into the world of Go. Firstly, the state-space for Go is several orders of 
magnitude larger than that of chess. On a 19x19 board where almost every empty intersection 
is a legal move, Go has an average branching factor of around 200, compared to roughly  25 
for chess. The game tree for Go is also deeper, with games that go to completion taking more 
than 200 moves, while the number for chess is closer to 80.

The other major factor is the lack of good heuristic functions for evaluating the state of 
incomplete games. While material and control of the center is easy  to measure in chess and 
already provides a good measure of who is ahead, there is no easy  way  to examine such 
characteristics on an unfinished Go position without being able to read out the life and death 
statuses of different groups or having a good sense of global tactics.

The combination of these two reasons explain why exhaustive tree search failed to lead to 
the same breakthroughs for Go as they did for chess, which is why  the best Go programs of 
the 20th century were more centered around the idea of expert knowledge. Monte Carlo Tree 
Search only came to prominence around the late 1990s and has since been the dominant 
paradigm in computer Go. The insight underlying MCTS is that moves can be evaluated by 
simulating many  random games from a given position and looking at the average win rate. 
Since playing games using only random moves can be done very quickly and the score of 
finished games can also be calculated easily, many thousands of games can be simulated and 
the resulting information will be more useful than attempting to statically  analyse different 
positions.

Aims and Deliverables
The aim of this project is to build a Go-playing agent which uses Monte-Carlo Tree Search, 
and to then use this agent to test various heuristics and extensions to this framework to see 
which ones would provide the most benefit. All of the evaluation is to be done on the smaller 
9x9 sized boards, since the much smaller state-space allows for much faster running of 
experiments and a better chance of the computer agent being able to play  well. The 
deliverables for this project were split into three stages:

Basic- Implement a Go-playing agent which relies on MCTS. The agent should be able to use 
this algorithm with a set number of simulations for each turn and be able to play  at around the 
level of a human beginner on a 9x9 sized board.

Intermediate- Improve the MCTS agent by implementing a variety of heuristics, including 
Go-specific as well as domain-independent ones. Investigate which method of utilising 
heuristics and which parameter settings are most effective, and test and evaluate the heuristics 
by having the different versions of the agent compete in a tournament in order to see which 
ones provide the most benefit.

Advanced- Implement a neural network to be trained through self-play, and evaluate the 
effectiveness of the network when used as another type of heuristic to aid the basic MCTS 
agent.
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II. RELATED WORK

The first example of a program that made use of statistical approaches to play Go was 
Gobble, developed by  Bernd Brugmann, in which the results from random playouts were 
combined with simulated annealing methods to create a program that could play better than a 
human beginner without any explicitly encoded knowledge of Go (Brugmann, 1993). The 
key idea which Brugmann introduced is that since a random game of Go can be simulated 
very quickly  and since the score at  the end can be easily calculated, static evaluation 
functions can be replaced by a large number of random playouts, the average result of which 
can give a good idea of the quality of a move.

However, it wasn’t until the use of UCT, Upper Confidence Bounds Applied to Trees, was 
introduced in the Monte-Carlo Tree Search algorithm that Monte-Carlo methods became the 
dominant paradigm in computer Go (Kocsis & Szepesvari, 2006). UCT  is based upon the 
UCB1 algorithm (Upper Confidence Bounds 1) which was designed to solve the 
‘exploration-exploitation’ dilemma in the Multi-Armed Bandit  Problem. In this scenario, the 
player has a selection of different levers in front of them, each of which pays out a reward 
according to some unknown distribution. A winning strategy in this game is one which is able 
to balance ‘exploitation’, pulling the lever with the highest  expected reward found so far to 
maximise profit, and ‘exploration’, investigating other levers to try and find one with an even 
higher expected payout. UCB1 does this by always selecting the action with the highest 
upper-confidence bound, which is the sum of two terms:

                                              (1)

where wi is the total reward from lever i thus far, N is the total number of actions taken, ni is 
the number of times lever i has been pulled, and k is some empirically chosen positive 
constant. (Note that for the UCB1 value of an action to be well defined, it must have already 
been tried at least once. Therefore, before comparing the UCB1 values over a set  of actions, 
each action must be ‘initialised’ with a single try.) The first  term, wi / ni, is the expected 
payout based on the observed outcomes so far, whilst the second term becomes larger when 
lever i is tried less often relative to the other available actions. When applied to Go, this 
formula allows the search to be weighted towards moves which seem promising without 
being too greedy and risking under-valuing good moves due to early unlucky playouts.

A lot of the focus that has gone into improving MCTS programs has centered around 
developing heuristics that incorporate pieces of Go knowledge which can guide the search to 
make it more accurate or efficient. There are two distinct places where the use of heuristics 
has been explored, for example by Peter Drake and Steve Uurtamo (Drake & Uurtamo, 
2007). The first  is to bias the program so that moves which are deemed good by the heuristics 
are explored earlier and given more consideration. The second is in the use of ‘heavy 
playouts’, which alter the default policy during the simulation step  in the hopes that more 
realistic games are played which result in higher quality information from each playout. 
Examples of simple heuristics that incorporate Go knowledge include playing moves that 
increase/decrease the number of liberties on particular groups which are involved in a fight, 
playing moves that capture enemy stones if possible, or playing moves that save your stones 
if they are in atari (one move away from being captured).
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A popular extension to the MCTS framework is that of Rapid Action Value Estimation 
(RAVE), which is based upon the ‘All Moves As First’ (AMAF) heuristic (Gelly & Silver, 
2011). AMAF is not a Go-specific heuristic, but it does rely on the property  that the value of 
a move is somewhat independent of the time at which it  is played. That is to say, a move 
which is a good move now, would still be a good move if it were played later in the game. 
Using the AMAF scores allows estimates about the quality of moves to be made more 
quickly, even though the scores would be less accurate than the actual MCTS values in the 
long run. RAVE  provides a method of combining the MCTS and AMAF scores so that the 
AMAF scores are given more weighting early  on, and then less weighting later on in the 
search when more information is available.

Recently  there has been renewed interest in the use of neural networks to help create 
strong Go programs using ‘deep  learning’ methods. The combination of neural networks 
trained with self-play and temporal difference learning is notable for having produced the 
first expert level backgammon player, capable of beating the best human players in the world 
using only a two-ply look-ahead (Tesauro, 1994). Previously, small neural networks using 
just a single hidden layer had been used in Go to try and evaluate positions by estimating 
final territory, although this resulted in only a very weak agent when used to play games 
directly (Schraudolph et al., 1994).

More complicated neural networks with up  to twelve hidden layers have also been used to 
predict expert moves after being trained on expert game records, and these have been 
improving in accuracy (Maddison et al., 2015). Combining the results of a neural network 
that suggests moves in this way  with MCTS is a current promising approach to improving 
state-of-the-art Go programs (Tian & Zhu, 2015). 

The current leading Go program, AlphaGo, is reliant on such deep convolutional neural 
networks. The strength of AlphaGo comes from having two neural networks, one doing move 
prediction and one doing evaluation, trained initially  through supervised learning using large 
databases of high-level amateur games, and then through reinforcement learning through self-
play. By themselves, the neural nets were able to defeat the state-of-the-art  Monte-Carlo 
programs. When combined with MCTS, AlphaGo was able to win five out of five games 
against the European champion, the first time a computer has beaten a human professional 
without taking a handicap (Silver et  al., 2016). AlphaGo went on to defeat one of the top 
Korean professionals, Lee Sedol, 4-1 in a subsequent match.

III. SOLUTION

This section describes the design and implementation of the solution, and discusses the 
algorithms used in detail.

Architecture
The programming language chosen for this project was C++. There were two main reasons 
for this, the first  being that speed was an important consideration. In the Monte-Carlo Tree 
Search algorithm, greater speed translates directly  into being able to simulate more games in 
a given amount of time, which is one of the most important factors affecting the effectiveness 
of the algorithm. The second reason is that since the aim of the project is to extend an MCTS 
agent using a variety of heuristics, an object-oriented programming language which allows 
inheritance is highly desirable as this would allow all of the various agents to be based on the 



7

same basic MCTS program.
Each player was designed as a class which would accept as an input a particular board 

position and would return the best move it could find. The project was structured so that the 
first task was to implement a player which would just run MCTS. Once this had been done, 
the different heuristics and extensions could be developed which could be selectively  added 
to the base MCTS player by creating new subclasses incorporating the new features as 
required.

Monte-Carlo Tree Search / UCT
For the reasons described earlier, it  is impossible to build out a complete game-tree for Go to 
any meaningful depth. Monte-Carlo Tree Search therefore uses a partial game tree which 
grows with each simulation that it plays out. Each iteration of the MCTS algorithm has four 
steps:

1) Selection: Starting at the root of the tree (which represents the current game state), the 
algorithm repeatedly selects a child node using its ‘tree policy’ (the simplest of which is 
to select the child with the highest winning percentage) until it reaches a leaf node. Since 
Go is an adversarial game, this is a minimax search as the tree policy  acts from the point 
of view of the player about to play.

2) Expansion: Once a leaf node has been found, the tree is expanded by adding a child 
node for one of the possible successor game states.

3) Simulation: From this new game state, the ‘default  policy’ is used to simulate the rest 
of the game, with the simplest policy  being to just play random moves until a terminal 
state is reached. Only the eventual outcome of the simulation is important; the specific 
moves that were played can do not need to be remembered.

4) Backpropagation: The outcome of the simulation is used to update the information in 
each of the nodes that were visited during step 1.

These steps are then repeated as many times as possible in the time allowed. The child 
node which has been passed through the most number of times is then selected as the actual 
move to be played.

Even though the margin of victory  is easy  to calculate at the end of a game of Go, it  is 
more robust to use a binary win/loss metric instead. This leads the agent to naturally carry out 
desired behaviours such as playing more conservatively when ahead and aggressively when 
behind, at the expense of making some moves that might seem unnatural to human players 
such as not caring about playing a move that  loses a few points because it doesn’t affect 
whether the computer will eventually win or not.

Growing the tree dynamically in this way allows the algorithm to spend as much of its 
time as possible searching along the paths that look the most promising and to not waste time 
exploring bad moves. However, a tree policy that is too greedy during step 1 can easily  lead 
to good moves being ignored due to some unlucky playouts early  on in the exploration. This 
is why the tree policy  used by MCTS programs during the selection step is based on UCT, as 
described in Section II.

An implementation of UCT requires almost no tactical knowledge of how to play Go. 
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Only the rules must be known to ensure that the random playouts are all legal. The one 
exception is that some knowledge about eyes is usually encoded, as moves that fill in a 
player’s own eyes are often suicidal with no tactical benefit and more importantly, may 
prevent a simulation from halting in reasonable time.

Figure 3. The steps of the MCTS algorithm.

Heuristics
Rapid Action Value Estimation / All-Moves-As-First
The all-moves-as-first heuristic allows more information to be extracted from each simulation 
by allowing related nodes in the tree to share information (Gelly & Silver, 2011). It is not a 
Go-specific heuristic, but it does rely on a particular property  present in Go, namely that the 
value of a move is somewhat independent of the time at which it is played. That is to say, a 
move which is a good move now, would still be a good move if it  were played later in the 
game. The greater the extent to which this property holds, the greater value the heuristic will 
provide.

Instead of each node in the tree keeping track of only  regular wins and visits as in UCT, 
each node will also keep count of its AMAF wins and visits. When using AMAF, all the 
moves played out  during the simulation phase need to be remembered. When it then comes to 
updating the tree, the algorithm not only updates the nodes that were visited, but  also 
increments the AMAF scores for any sibling nodes which represent moves that were played 
at some point further on in that game.

The AMAF values for each node can therefore be thought of as counting how many times 
that move has been played by that player at any future point during the simulations. and how 
many of those times that move has been part of a series of moves that led to a win. Since 
around half the points on the board are played by a given player during every game, nearly 
half the nodes will have their AMAF scores updated after every playout, so a lot more 
information is extracted per simulation than would be through regular UCT.

The RAVE (Rapid Action Value Estimation) algorithm is used to combine the AMAF 
values with the regular Monte-Carlo scores. If the Monte-Carlo score is M, and the AMAF 
score is A, then the RAVE score (R) for each node is given by the weighted sum:
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                                                     (2)

When the total number of simulations run is still small, then β should be close to 1 so that 
most of the weighting is given to the AMAF value. As more simulations are run, we want the 
more accurate Monte-Carlo value to take over and so β should decrease.

Figure 4. The All-Moves-As-First heuristic (image taken from Gelly & Silver, 2011). In 
this example, black is looking to examine the value of the moves a and b from state s. The 
simulations in which a is played directly have resulted in two losses, whereas playing b 
directly has resulted in one win and one loss. However, looking at all the simulations in 
which a has been played at any point gives three wins and two losses, whereas b has only 
achieved two wins and three losses. Therefore, the AMAF heuristic would prefer a to b at 
this stage of the algorithm. (The difference between circles and diamonds can be ignored 
for the purposes of this diagram.)

The cooling schedule we use takes the form:

                                                        (3)

This cooling schedule is parameterised by an equivalence parameter k, which is the 
number of simulations that need to be run for the Monte-Carlo and the AMAF scores to be 
given equal weighting, and can be chosen empirically.

As before with UCT, we can also introduce a variance term into the RAVE algorithm to 
encourage more exploration:
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                                                        (4)

Go-Specific Heuristics
There are two places in an MCTS algorithm where domain specific heuristics can be 
employed (Drake & Uurtamo, 2007). The first is to bias the program so that moves which are 
deemed good by the heuristic are explored earlier and given more consideration. The second 
is in the use of ‘heavy playouts’, which alter the default  policy  during the simulation step in 
the hopes that more realistic games are played which result in higher quality  information 
from each playout.

Move-ordering takes place at the expansion step  of the MCTS algorithm. When a new 
child node is created, the heuristics may give some prior idea of whether or not the move is 
likely to be a good one and whether it  is worth exploring early. This can be done by 
artificially adjusting the count of the wins and visits to that node. For example, if a given 
move is thought to be an especially good one, then instead of initialising the node with a 
count of zero wins and zero visits, it can be given a value of say 150 wins over 200 visits. 
The value that  the visits count is set to should correspond to the confidence in the accuracy of 
the heuristic, so that a heuristic which is known to be better has a greater and longer-lasting 
influence in guiding the search.

In the regular MCTS algorithm, the simulation step runs by  applying the default policy  of 
just playing random moves until the game ends. This works because even though the random 
games are poorly played and unrealistic, averaging the outcome over enough simulations still 
produces useful information. A natural way  to proceed would be to try  to improve the quality 
of these simulations by guiding the playouts using some simple heuristics, in the hope that the 
better quality information emerging from each playout will outweigh the cost of the extra 
time that these simulations would take.

Another danger in using heavy playouts aside from increased time, is that you may end up 
with a bias in the sample of games which you simulate, which could lead to the information 
being less accurate than using regular MCTS. Indeed it  has been found that stronger default 
policies (policies that win more often when applied directly to choose a move) can result in 
weaker agents when used for the purpose of heavy playouts (Gelly & Silver, 2007). 

This project will run heavy playouts using heuristics using a best-of-n method. Instead of 
selecting just a single random move to play at each stage, the new policy will select n moves, 
compute the heuristic values for each of them, and play the move with the highest  value. This 
method keeps down the time that needs to be spent doing heuristic calculations, and keeps the 
playout from being completely  dominated by  the heuristics. The exact value of n can be 
empirically chosen.

The domain-specific heuristics which were implemented and tested in this project were:

• Proximity heuristic - Favour moves in the local area of the last move which was played, 
since a new enemy  stone in the area is likely to change the situation and often requires 
an urgent response.

• Avoid-the-first-two-lines heuristic - Moves that are played near the edge of the board 
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are often ineffective at exerting influence over the rest of the board or at  taking large 
amounts of territory. Furthermore, they tend to be more vulnerable to attack, and so are 
often bad moves, especially in the opening.

• Capture heuristic - If a stone or a group of stones can be captured, then capture them. 
Although not all captures are good moves, they often provide tactical benefit and can 
frequently be ‘urgent’ moves since not  capturing now could allow the opponent’s stones 
to escape.

Neural Network
For this project, a simple feed-forward neural network with a single hidden layer was 
implemented and trained to predict the eventual winner of the game. These predictions could 
then be used to evaluate positions and guide the MCTS algorithm in the same way as other 
heuristics would.

Other networks have included higher-level features of the game as inputs to the network, 
such as the liberties on each group of stones, distance from the edge of the board, or distance 
from the last move that was played. All of this would be extra tactical information which the 
network could exploit without having to calculate the intermediate values. However, to keep 
the network as fast and as simple as possible, this project only only used the raw game-state 
as the network input. Specifically, there were 81 input vectors, one for each point on the 
board, each with three binary channels. The channels indicated whether a point was empty, 
occupied by white, or occupied by black. There was one final input indicating whose turn it 
was to play next. The whole network was fully connected, with the hidden layer consisting of 
40 neurons, and a single output neuron returning a value between 0 and 1, indicating the 
likelihood that black would go on to win the game. Throughout the network, the logistic 
function was used to smooth the activation of each neuron to return an output between 0 and 
1:

                                                                                                      (5)
where k is some positive constant.

Figure 5. Diagram of a single neuron within the network. The activation level is calculated 
as the weighted sum of the inputs and the bias, which is then scaled to a value between 0 
and 1 using the sigmoid function.
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The neural network was trained through self-play  and a method called Temporal 
Difference learning (TD), a standard method of reinforcement learning which was used to 
train the first expert level backgammon computer using only self-play (Tesauro, 1994). The 
TD algorithm works for tasks in which the aim is to predict the end result in a sequence. 
Instead of only performing updates when the final result is known, the TD algorithm updates 
its old predictions after each timestep to bring them more into line with its latest predictions. 
During the training period when the neural network is playing against itself, for each move 
the network will do a 1-ply look-ahead and evaluate all the possible successor positions. If 
the network were to just play the best move it found, then it  would end up playing very 
similar games each time and so the training would be very slow. Therefore the moves are 
chosen stochastically with better moves having a higher probability of being chosen 
according to:

                                                                                                                    (6)
where si is the score for move i and k is some positive constant. Higher values of k make it 
more likely that the moves with higher evaluations are chosen. The evaluation of the move 
which is eventually  chosen is then used as the target value for the initial game-state, and the 
weights are updated accordingly.

Figure 6. Example of a neural network with a single hidden layer. For this project, the 
network takes 82 inputs (specifying the configuration of a 9x9 board, as well as whose turn 
it is to play), and was trained to predict the eventual winner at the end of the game. This 
information could then be used as another heuristic to help evaluate different board 
positions.

The update is performed using standard backpropagation methods, where the change in 
each weight is equal to the learning rate multiplied by the partial derivative of the squared 
error with respect to each weight:



13

                                                                                     (7)

IV. RESULTS

This section describes the results of the various experiments which were run. We first discuss 
the experimental settings and how the parameters were tuned to make the algorithms as 
strong as possible, and then go on to discuss the results of the different agents playing against 
each other. We conclude by looking at a match played between the strongest agent and a 
human player.

Tuning
Before any testing of the could be done, there were various parameters in the algorithms that 
needed to be tuned in order to optimise performance and determine the experimental settings. 
Two of the main parameters that required tuning were the equivalence parameter in the 
RAVE algorithm in (3), and the level of confidence in the heuristics.

Figure 7 shows that  best performance with RAVE is achieved using an equivalence 
parameter of at least several hundred, indicating that relying more on the AMAF estimate for 
the first several hundred simulations produces better results than only using the regular 
Monte-Carlo results. We found that increasing the value of the equivalence parameter much 
beyond this point  had little further impact. Figure 8 shows the performance for different 
levels of confidence in the heuristics. Although it is clear that using heuristics for the 
purposes of move-ordering significantly improves performance, it can also be seen that if the 
heuristics are given too much weighting, then MCTS will not be able to correct for any 
mistakes in the heuristic values and so performance declines.

Figure 7. Graph showing the win percentage using the RAVE heuristic for different values 
of the equivalence parameter, k. The RAVE player used 2,000 simulations per turn against 
a regular MCTS opponent running 3,000 simulations per turn. Fifty games were played at 
each setting.
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Figure 8. Graph showing the win percentage when using heuristics to do move-ordering 
for different values of heuristic confidence when playing against a regular MCTS 
opponent. Each player used 3000 simulations per turn, with fifty games played at each 
setting.

The values of the equivalence parameter and heuristic confidence to be used in the rest of  
the experiments were taken to be the best performing values in the tuning runs. Using too 
high a value for n in the best-of-n heavy playouts resulted in simulations taking an 
unreasonable length of time so a value of five was used.

The performance of the neural network as it was being trained is shown in figure 9, where 
the results of the network playing directly against  a completely random player are displayed 
after repeated rounds of training through self-play. We found that not having a high enough 
value for k in (6) resulted in the network reaching a plateau earlier and being unable to 
improve its win rate. We used a value of 20 which was found to work reasonably well.

Figure 9. Graph showing the win percentage of the neural network when playing against a 
random opponent after increasing amounts of training. 200 games were played after each 
training stage.
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Tournament Results
To evaluate the relative strength of each heuristic and determine which provided the most 
benefit to overall performance, we conducted a round-robin tournament using five different 
versions of the basic player (all running at 3,000 simulations per turn):

1) The basic MCTS algorithm on its own.
2) Using the RAVE extension (k = 200).
3) Using heuristics to do move-ordering (heuristic_confidence = 7).
4) Using heavy playouts (n = 5).
5) Using the neural network as a heuristic for move-ordering.

The results of the tournament are shown in Table 1.

Win % for 
column player

MCTS RAVE Move-
ordering

Heavy 
playouts

Neural Net

MCTS 94 74 80 52

RAVE 6 28 36 12

Move-ordering 26 72 52 30

Heavy playouts 20 64 48 22

Neural Net 48 88 70 78

Table 1. Results of the round-robin tournament between the different versions of the MCTS 
agent. Numbers show the win percentage for the column player after a 50 game match.

Games Against Human Players
The last step of experiments was to play the strongest possible version of the program against 
human players. This allowed us to get  a feel for the absolute strength of the program and to 
give it an approximate rank. We used 30,000 simulations per turn for these games, and made 
use of all possible heuristics. As the program was still significantly weaker than the human 
opponents, handicap stones were given to the computer. With a four stone handicap, the 
computer was able to win almost all games against  the author (a 9kyu player). With only 
three stones, the computer would lose most matches as it  struggled to deal with the increased 
choice during the opening, and would subsequently  not have large enough lead to try  to hold 
on to going into the endgame. One of the four stone games which the computer won is shown 
in Figures 10-11 below.



16

Figure 10. The opening moves of a game played between the computer and the author. 
Black plays solidly up to this point, sacrificing the stones in the lower left. White 25 was a 
mistake which Black would later punish. Black 28 is a bad move as White can capture 
straight away. Black has maintained a solid lead up to this point.

Figure 11. Moves 29-63. 35 at 50, 60 at 63. Black 32 was a very good move which 
brought the stones in the lower left back to life. Black 40 was a mistake. Blocking at 41 or 
43 would have been much better and preserved Black’s large lead. However, the game was 
still good for Black and there was little chance for White to catch up. Black’s pointless 
sacrifice at 60 is an example of the computer freely giving up points if it does not affect the 
final outcome. Black wins the game by 2 points.

V. EVALUATION

Outcome
Making use of the AMAF heuristic through the RAVE algorithm proved to be the most 
effective extension of the MCTS agent, defeating all other opponents in the tournament and 
producing the most number of wins against the basic MCTS opponent. The agent using heavy 
playouts was the next most successful in the tournament, although this observation should be 
balanced by the fact that this program was considerably  slower than any of the others. 
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Nevertheless, the results show that an efficient implementation of this procedure would be a 
good way to improve performance, and that the use of heuristics is more valuable in the 
simulation of stage of MCTS than it is for doing move-ordering.

Even after large amounts of training time and being shown that it was much better than 
random, the neural net  failed to provide much value for use as an extra heuristic, 
accumulating just eight more wins that the basic MCTS program over 250 games played, 
within the realm of statistical error. Although it is possible that more training would have 
yielded better results, it seems likely  that the simplicity of the network’s architecture limited 
the strength of the information that it could provide.

The computer player was able to win against the author when playing with a four-stone 
handicap, indicating play at  the level of a human beginner (around 22 kyu). Despite playing 
some obviously bad moves, as well as moves which would likely not have been played by 
any human, the computer played well enough to maintain its lead and win the game 
comfortably.

Limitations
The overall system had several limitations affecting the strength of the findings. The first is 
that since the program was optimised mainly for simplicity instead of speed and there was 
only a limited time to run experiments, the number of simulations per turn had to be capped 
at the low thousands in order for the games to complete in a reasonable amount of time. Since 
the accuracy of the Monte-Carlo scores is directly  linked to the number of playouts 
completed, being able to scale this number would likely have produced a much stronger 
player, and so this part of the design could have possibly warranted more attention in the 
early stages of development. This is also true for the implementation of heavy playouts, 
which despite demonstrating that it  could improve performance significantly, ran very slowly 
in comparison with the other heuristics. This means that the value of n had to be kept small in 
the best-of-n implementation, so we were unable to see whether higher values of n 
(presumably corresponding to higher quality  playouts) would have resulted in even larger 
benefits. The program’s overall lack of speed also limited the number of games that could be 
played during experiments. Although 50 game matches were enough to reveal clear trends 
and effects, the small sample size leaves the possibility for a lot of noise and variance. This 
means that it is very difficult to accurately compare the sizes of various effects, particularly 
when very similar to one another.

In addition to AMAF and RAVE, this project also looked at a small number of domain 
specific heuristics. Although these heuristics were partly  chosen because of their simplicity  to 
implement, the experiments showed that they did manage to improve overall performance. 
However, several other heuristics which could potentially have provided greater benefit had 
to be overlooked due to the lack of time. These include using machine learning to build up a 
database of patterns to suggest possible good moves in particular local situations. There are 
also other domain-independent heuristics which have proven to be useful in computer Go, 
such as the history  heuristic which similarly  to AMAF, aims to favour moves which produce 
good results in several branches of the search tree (Schaeffer, 1989). Since this project  found 
RAVE to be the best way to improve performance, heuristics which work along similar 
principles would be a good candidate area to look for similar improvements.

This project only implemented a neural network with a very simple architecture. Many  of 
the recent strides forward in computer Go have resulted from creating more complex 
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networks with more hidden layers. Although implementing a network of this kind of scale 
would have been infeasible for this project, there is the possibility that a network architecture 
that was more suited to the problem at hand, such as a convolutional neural network, could 
have been trained more quickly and produced better results than the single-layer network that 
was used. It is also possible that different  training methods might have proved more effective 
than using just self-play as done in this project. Databases of high-level human games could 
have been used instead, or the network could have been trained against opponents other than 
itself, or some combination of these strategies could have been used to either speed up the 
training of the network or to improve final performance.

Lastly, during the tuning and testing process, the different heuristics and extensions to the 
program were examined mostly  individually. Due to the number of possible configurations 
being too high, it was not possible to test  the different combinations of the improvements, 
although doing so may have found that certain aspects worked particularly  well with each 
other or may have required different parameter settings to achieve best performance.

Project organisation
This project managed to complete its basic, intermediate and advanced aims and deliverables. 
The nature of the project and the design solution meant that after the initial development on 
the basic MCTS program had been completed, it was easy to add lots of extensions on top of 
the existing framework. However, since the core MCTS component was used by  all of the 
players, it would have been worth spending more time on this part of the software, 
specifically with an eye towards optimising more for speed. Although this project managed to 
survey a number of improvements to the MCTS player, some of these extensions were only  at 
a basic level, and larger benefits may have been found with a more focused approach which 
examined some of the aspects in greater detail.

VI. CONCLUSION

In this project, we implemented a computer player that could play the game of Go using a 
Monte-Carlo approach, and then investigated the use of different heuristics and extensions to 
the basic algorithm to see which ones would provide the most benefit. We found that Rapid 
Action Value Estimation, a technique which aims to extract more information from each 
simulation, was the most effective way to improve the Monte-Carlo agent, winning out 
against all the other agents in a tournament setting. The use of Go-specific heuristics was also 
found to be effective, both when used to bias the search towards particular areas, and when 
used in heavy playouts to increase the quality  of the simulations. However, an efficient 
implementation of heavy playouts is required for the technique to be worthwhile, as 
otherwise the extra time spent  improving the playout quality  could be better invested into 
simply  running more simulations. Despite the current breakthroughs in computer Go 
stemming  primarily from the improvement of neural networks, we found that a single-layer 
neural network was unable to provide any practical benefit. This could be because a network 
with this simplicity  takes too long to train, or the network architecture could be insufficient 
for learning enough information about the game. When all the techniques were combined, the 
resulting computer player was able to defeat the author when playing on a 9x9 sized board 
with a four stone handicap, achieving the aim of being able to play at a level equivalent to 
that of a human beginner.
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There are several ways in which this project  could be extended. Firstly, improvements in 
speed could be looked for, as any Monte-Carlo based agent will be able to benefit simply by 
increasing the number of simulations it is able to run, and this would also make heavy 
playouts a more viable option when looking for improvements. Secondly, since RAVE proved 
to be successful, similar heuristic techniques which improve the search without having to 
incorporate expert knowledge could be examined to see if they can provide similar benefit. 
The most interesting area for extending the work done in this project involves neural 
networks with improved architectures and training methods. For example, convolutional 
neural networks could be used to try  and detect local patterns, and some of the training could 
be done by looking at high-level games instead of relying solely on self-play.
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